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Brassica nigra (B genome) and B. oleracea (C genome) having formed 
the amphidiploid species B. juncea (A and B genomes), B. napus  
(A and C genomes) and B. carinata (B and C genomes) by hybridiza-
tion. Comparative physical mapping studies have confirmed genome 
triplication in a common ancestor of B. oleracea11 and B. rapa12 since 
its divergence from the A. thaliana lineage at least 13–17 MYA6,7,13.

Using 72× coverage of paired short read sequences generated by 
Illumina GA II technology and stringent assembly parameters, we 
assembled the genome of the B. rapa ssp. pekinensis line Chiifu-401-42 
and analyzed the assembly (Online Methods and Supplementary Note). 
The final assembly statistics are summarized in Table 1. The assembled 
sequence of 283.8 Mb was estimated to cover >98% of the gene space 
(Supplementary Table 1) and is greater than the previous estimated 
size of the euchromatic space, 220 Mb14. The assembly showed excellent 
agreement with the previously reported chromosome A03 (ref. 15) and 
with 647 bacterial artificial chromosomes (BACs)14 (Online Methods) 
sequenced by Sanger technology. Integration with 199,452 BAC-end 
sequences produced 159 super scaffolds representing 90% of the assem-
bled sequences, with an N50 scaffold (N50 scaffold is a weighted median 
statistic indicating that 50% of the entire assembly is contained in scaf-
folds equal to or larger than this value) size of 1.97 Mb. Genetic mapping 
of 1,427 markers in B. rapa allowed us to produce ten pseudo chromo-
somes that included 90% of the assembly (Supplementary Table 2).

We found the difference in the physical sizes of the A. thaliana 
and B. rapa genomes to be largely because of transposable elements 
(Supplementary Table 3). Although widely dispersed throughout the 
genome, as shown in Figure 1, the transposon-related sequences were 
most abundant in the vicinity of the centromeres. We estimated that 
transposon-related sequences occupy 39.5% of the genome, with the 
proportions of retrotransposons (with long terminal repeats), DNA 
transposons and long interspersed elements being 27.1%, 3.2% and 
2.8%, respectively (Supplementary Tables 4 and 5).

We modeled and analyzed protein coding genes (described in the 
Online Methods and the Supplementary Note). We identified 41,174 
protein coding genes, distributed as shown in Figure 1. The gene models 
have an average transcript length of 2,015 bp, a coding length of 1,172 
bp and a mean of 5.03 exons per gene, both similar to that observed in 
A. thaliana16. A total of 95.8% of gene models have a match in at least 
one of the public protein databases and 99.3% are represented among 
the public EST collections or de novo Illumina mRNA-Seq data. Among 
the total 16,917 B. rapa gene families, only 1,003 (5.9%) appear to be 
lineage specific, with 15,725 (93.0%) shared with A. thaliana16 and 9,909 
(58.6%) also shared by Carica papaya17 and Vitis vinifera18 (Fig. 2).

The genome of the mesopolyploid crop species Brassica rapa
The Brassica rapa Genome Sequencing Project Consortium

We report the annotation and analysis of the draft genome 
sequence of Brassica rapa accession Chiifu-401-42, a Chinese 
cabbage. We modeled 41,174 protein coding genes in the  
B. rapa genome, which has undergone genome triplication.  
We used Arabidopsis thaliana as an outgroup for investigating 
the consequences of genome triplication, such as structural 
and functional evolution. The extent of gene loss (fractionation) 
among triplicated genome segments varies, with one of the 
three copies consistently retaining a disproportionately large 
fraction of the genes expected to have been present in its 
ancestor. Variation in the number of members of gene families 
present in the genome may contribute to the remarkable 
morphological plasticity of Brassica species. The B. rapa 
genome sequence provides an important resource for studying 
the evolution of polyploid genomes and underpins the genetic 
improvement of Brassica oil and vegetable crops.

Model species have provided valuable insights into angiosperm 
(flowering plant) genome structure, function and evolution. For example, 
A. thaliana has experienced two genome duplications since its divergence 
from Carica, with rapid DNA sequence divergence, extensive gene loss 
and fractionation of ancestral gene order eroding the resemblance of  
A. thaliana to ancestral Brassicales1. Compared with an ancestor at just 
a few million years ago, A. thaliana has undergone a ~30% reduction in 
genome size2 and 9–10 chromosomal rearrangements3,4 that differentiate 
it from its sister species Arabidopsis lyrata. Whole-genome duplication 
has been observed in all plant genomes sequenced to date. A. thaliana has 
undergone three paleo-polyploidy events5: a paleohexaploidy (γ) event 
shared with most dicots (asterids and rosids) and two paleotetraploidy 
events (β then α) shared with other members of the order Brassicales. 
B. rapa shares this complex history but with the addition of a whole-
genome triplication (WGT) thought to have occurred between 13 and 
17 million years ago (MYA)6,7, making ‘mesohexaploidy’ a characteristic 
of the Brassiceae tribe of the Brassicaceae8.

Brassica crops are used for human nutrition and provide opportuni-
ties for the study of genome evolution. These crops include important 
vegetables (B. rapa (Chinese cabbage, pak choi and turnip) and Brassica 
oleracea (broccoli, cabbage and cauliflower)) as well as oilseed crops 
(Brassica napus, B. rapa, Brassica juncea and Brassica carinata), which 
provide collectively 12% of the world’s edible vegetable oil production9. 
The six widely cultivated Brassica species are also a classical example 
of the importance of polyploidy in botanical evolution, described by 
‘U’s triangle’10, with the three diploid species B. rapa (A genome), 

A full list of members appears at the end of the paper.
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We analyzed the organization and evolution of the genome (as 
described in the Online Methods and the Supplementary Note).  
B. rapa’s close relationship to A. thaliana allows Arabidopsis to be used 
as an outgroup for investigating the adaptation of the Brassica lineage 
to the triplicated state. In total, 108.6 Mb (90.01%) of the A. thaliana 
genome and 259.6 Mb (91.13%) of the B. rapa genome assembly were 
contained within collinear blocks. We confirmed the almost complete 
triplication of the B. rapa genome relative to A. thaliana (Fig. 3) and (by 
inference) to the postulated Brassicaceae ancestral genome (n = 8). The 
gene paralogues anchored in the triplicated segments (Supplementary 
Fig. 1) and their orthologs (Supplementary Table 6) dated the meso-
hexaploidy event to between 5 and 9 MYA (Supplementary Fig. 2), 
which is more recent than has been reported previously13.

The Brassica mesohexaploidy offers an opportunity to study gene 
retention in triplicated genomes. Assuming an initial count of protein 
coding genes similar to that of A. thaliana (around 30,000), the newly 

formed hexaploid would have about 90,000 genes, of which we can now 
identify only 41,174. This is typical of the substantial gene loss that occurs 
following polyploid formation in eukaryotes19–21. We identified each of 
the orthologous blocks in the B. rapa genome corresponding to ancestral 
blocks using collinearity between orthologs on the genomes of B. rapa 
and A. thaliana and found significant disparity in gene loss across the 
triplicated blocks (Supplementary Fig. 3). Of the 21 regions of conserved 
synteny, 20 showed significant deviations from equivalent gene frequen-
cies (P < 0.05) (Supplementary Fig. 4). To illustrate this variation, we 
concatenated the least fractionated blocks (LF), the medium fractionated 
blocks (MF1) and the most fractionated blocks (MF2) and calculated 
the proportions of genes retained in each of these sub-genomes relative 
to A. thaliana. The LF sub-genome retains 70% of the genes found in  
A. thaliana, whereas the MF1 and MF2 sub-genomes retain substantially 
lower proportions of retained genes (46% and 36%, respectively; Fig. 4). 
Based on the analysis of synonymous base substitution rates (Ks values), 
the pairwise divergences between the three sub-genomes are indistin-
guishable from each other (Supplementary Table 7). Our observation of 
differentially fractionated sub-genomes is consistent with the hypothesis 
that the sub-genomes MF1 and MF2 underwent substantial fractiona-
tion in a tetraploid nucleus before fractionation commenced in the LF 
genome in a more recently formed hexaploid. However, biased fractiona-
tion following tetraploidy (albeit less extreme than we observed) has 
been reported in A. thaliana22 and maize23, where it was hypothesized 
to be the result of differential epigenetic marking of the parent genomes 
(resulting in differential gene silencing and consequential fraction), rep-
resenting an alternative hypothesis.

The retention of extensive collinear genome blocks provides a 
potential opportunity for ectopic DNA recombination. By finding and 
comparing homologous gene quartets, including two α or β duplicates 
in Brassica and their respective orthologs in Arabidopsis, we noted that, 
respectively, 25% and 30% of Brassica and Arabidopsis duplicates are 
more similar to their intragenomic paralog than to their intergenomic 
ortholog, suggesting appreciable gene conversion since the divergence of 
these lineages (Supplementary Note). The sizes of the affected regions 
vary from 10 bp to >2 kb, with a majority of these apparent conversion  
events occurring in parallel in both species. Genes proximal to telo
meres tend to have lower nucleotide substitution rates than distal genes 
(P = 0.0004), which is likely to be a result of higher conversion rates in 
the former and is consistent with prior findings in grasses24,25.

The gene dosage hypothesis26 predicts that gene functional categor
ies encoding products that interact with one another or in networks  

Table 1  Summary of the final assembly statistics

Contig size Contig number Scaffold size Scaffold number

N90 5,593 10,564 357,979 159

N80 10,984 7,292 773,703 104

N70 15,947 5,308 1,257,653 77

N60 21,229 3,874 1,452,355 56

N50 27,294 2,778 1,971,137 39

Total size 264,110,991 283,823,632

Total number  
(>100 bp)

60,521 40,549

Total number  
(>2 kb)

14,207 794
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Figure 1  Chromosomal distribution of the main B. rapa genome features. 
Area charts quantify retrotransposons, genes (exons and introns) and DNA 
transposons. The x axis denotes the physical position along the B. rapa 
chromosomes in units of million (M) bases.
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Figure 2  Venn diagram showing unique and shared gene families between 
and among four sequenced dicotyledonous species (B. rapa, A. thaliana, 
C. papaya and V. vinifera).
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should be over retained and genes with products that do not interact 
with other gene products should be under retained. In accordance 
with this hypothesis, we found B. rapa transcription factors with a 
detectable ortholog in A. thaliana to be significantly over retained 
(Supplementary Table 8 and Supplementary Note). We obtained 
similarly consistent results for genes encoding known protein subunits 
of cytoplasmic ribosomes and for genes known to be involved with the 
proteosome. We found under retention of genes encoding products 
with few interactions, specifically those associated with DNA repair, 
nuclease activity, binding and the chloroplast (Supplementary Table 9).  
The Gene Ontology annotation classes of over retained genes sug-
gests that genome triplication may have expanded gene families that 
underlie environmental adaptability, as observed in other polyploid 
species27. Genes with Gene Ontology terms associated with response 
to important environmental factors, including salt, cold, osmotic 
stress, light, wounding, pathogen (broad spectrum) defense and both 
cadmium and zinc ions, were over retained (Fig. 5). Genes respond-
ing to plant hormones (jasmonic acid, auxin, salicylic acid, ethylene, 
brassinosteroid, cytokinin and abscisic acid) were also over retained.

Under selection, Brassica species have a remarkable propensity for the  
development of morphological variants28; we analyzed factors poten-
tially involved in this development (Supplementary Note). One factor 
may be a general acceleration of nucleotide substitution rates. For 2,275 
orthologous groups of genes in B. rapa, A. thaliana, papaya and grape 
(Supplementary Table 10), the nucleotide substitution rates in B. rapa 
were greater than in the other plants, with average Ks (Ks is the ratio 
of the number of synonymous substitutions per synonymous site) and  
Ka (Ka is the ratio of the number of non-synonymous substitutions per non- 
synonymous site) values 69% and 24%, respectively, greater than papaya 
and 1% and 7%, respectively, greater than A. thaliana (Supplementary 
Table 11). The much slower evolutionary rate in papaya may be explained 
by its longer generation time as a perennial. Another factor may be expan-
sion of auxin-related gene families, as auxin controls many plant growth 
and morphological developmental processes29–31. We identified 347  
B. rapa genes related to auxin synthesis, transportation, signal transduc-
tion and inactivation, in contrast to 187 such genes present in A. thaliana 
(Supplementary Tables 12 and 13 and Supplementary Figs. 5–14). The 
TCP gene family is important in the evolution and specification of plant 
morphology32. This family has been amplified in B. rapa, which contains  
39 TCP genes, which is more than A. thaliana (24), grape (19) or papaya (21)  
(Supplementary Fig. 15). The regulation of flowering is key to many 
Brassica morphotypes. Mesohexaploidy has had contrasting effects on 
the genes involved. FLC (FLOWERING LOCUS C)33 has three orthologs 
in B. rapa as a consequence of the WGT (Supplementary Fig. 16).  
Likewise, five of six B. rapa VRN1 (VERNALIZATION1) genes34 
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produced by the WGT have been preserved (Supplementary Fig. 17). 
However, GI (GIGANTEA) genes35 have been limited to only one copy 
(Supplementary Fig. 18), as have the SVP (SHORT VEGETATIVE 
PHASE) genes36 (Supplementary Fig. 19) and each of the three COL 
(CONSTANS-LIKE) genes37 (Supplementary Fig. 20).

The comparison of the genomes of B. rapa and A. thaliana, as for pre-
vious comparisons of the cereals sorghum and rice38, sheds new light on 
the evolution of genome evolution in plants important for human nutri-
tion. Our growing understanding of the processes shaping the triplicated 
genome of the mesopolyploid B. rapa is of relevance not only for closely 
related crops species, such as B. oleracea and B. napus, but also for other 
important crops with triplicated genomes, such as bread wheat.

URLs. Brassica info, http://www.brassica.info/; GenoScope database, 
http://www.genoscope.cns.fr/externe/GenomeBrowser/Vitis/; Hawaii 
Papaya Genome Project, http://asgpb.mhpcc.hawaii.edu/papaya/; 
Arabidopsis Information Resource, http://www.arabidopsis.org/.

Methods
Methods and any associated references are available in the online 
version of the paper at http://www.nature.com/naturegenetics/.

Accession codes. This whole-genome shotgun project has been depos-
ited at DDBJ/EMBL/GenBank under the accession AENI00000000. The 
version described in this paper is the first version, AENI01000000. Full 
annotation is available at http://brassicadb.org/.

Note: Supplementary information is available on the Nature Genetics website.
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ratio of three copies. (b) The yellow bar is the ratio of one-copy orthologs, 
and the dark green bar is the ratio of two- or three-copy orthologs. The last 
category is the total sets of all orthologs listed as a control. The P value of 
each category is indicated under the bars. GO, Gene Ontology.
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ONLINE METHODS
Genome sequencing and assembly. Approximately 72-fold shotgun coverage was 
generated using Illumina GA II sequencing from short (~200 bp), medium (~500 bp)  
and long (~2 kb, 5 kb and 10 kb) insert libraries (Supplementary Note and 
Supplementary Table 14). The raw Illumina reads were filtered for duplicates, 
adaptor contamination and low quality before assembly into preliminary scaffolds 
using SOAPdenovo39 run with default parameters. We first assembled the reads 
from the short insert size (≤500 bp) libraries into contigs using Kmer (de bruijn 
graph kmer) overlap information and ensured the resulting contigs were unique by 
determining an unambiguous path in the de bruijn graph. This resulted in contigs 
with an N50 length of 1.1 kb, achieving a total length of 222 Mb; the long insert size 
mate-paired libraries (≥2 kb) were not used initially because the chimaeric reads 
common to such libraries can generate incorrect sequence overlaps. After obtaining 
the unique contigs, we mapped all available paired-end reads to these contigs to 
connect adjacent contigs. In order to avoid interleaving and to reduce the impact of 
the insert-size deviation of any sequencing library, we used a hierarchical assembly 
method, constructing the scaffolds step by step by adding data from each library 
separately ranked according to insert size from smallest to largest. This obtained 
scaffolds with an N50 length of 347 kb and a total genome length of 288 Mb. Most 
of the remaining gaps between contigs probably occur in repetitive regions, so we 
identified the paired-end reads with only one end mapped to a unique contig and 
performed local assembly with the unmapped end to fill small gaps within the scaf-
folds. The resulting assembly had a final contig N50 length of 27 kb (Supplementary 
Table 15). In total, 32-Mb gaps were closed. A total of 199,452 BAC-end Sanger 
sequences retrieved from http://www.brassica-rapa.org/BRGP/bacEndList.jsp were 
used to construct the super scaffolds. The gaps within the scaffolds were filled in as 
previously described40. The expected genome size of B. rapa was estimated from the 
distribution of 17-mer depth as assessed from the filtered sequence data using meth-
ods previously described40. The peak depth of 17-mers was at 15-folds and a total 
7,287,899,150 17-mers were obtained. We obtained an estimated genome size of  
485 Mb by dividing the total number of 17-mers by the peak depth.

Validation of assembly. NUCmer41 was used to compare the sequence of chromo-
some A03 assembled here by whole-genome shotgun sequencing (WGS A03) to the 
same chromosome assembled by BAC Sanger sequencing (BAC A03) previously 
reported15 (Supplementary Note and Supplementary Fig. 21). The total sizes of 
WGS A03 and BAC A03 are approximately 31.72 Mb and 32.70 Mb, respectively, 
with slightly more repeat sequences assembled using the BAC approach (9.82 Mb 
in BAC A03 and 5.68 Mb in WGS A03) (Supplementary Table 16). There were 
more gaps observed in BAC A03 (1,035/1,358,889 bp, number of gaps/total size of 
gaps) than in WGS A03 (858/844,319 bp) (Supplementary Table 17). We identi-
fied 44 obvious inversions (>1 kb) between the two assemblies. Evidence provided 
by studying the mapped paired ends, the depth of the mapped reads and gaps at 
the boundaries for 38 inversions supported the WGS assembly (Supplementary 
Fig. 22a,b), and 6 inversions remained ambiguous (Supplementary Fig. 23c). 
To evaluate the accuracy of the assembly on a local scale, the sequence of  
647 complete BAC clones (phase 2 and phase 3) that had been deposited in NCBI 
and had been genetically mapped (see URLs) were compared with their equivalent 
WGS sequence (Supplementary Table 18).

Integration of shotgun assembly with genetic maps. The scaffolds were 
anchored to the B. rapa genetic linkage map using 1,427 uniquely aligned 
markers from an integrated linkage map developed from four populations 
(Supplementary Table 19). In addition, 1,054 markers mapped to the B. napus 
A genome were used to verify and aid the alignment. Chromosomes were ori-
entated by alignment to the reference A genome linkage groups from Parkin 
et al.42 (equivalent to N1-N10). Where genetic information was not available 
from Brassica maps, scaffold order and/or orientation was inferred based on 
evidence of conserved collinearity with the A. thaliana gene order.

Protein coding gene annotation. In addition to available Brassica EST data 
(downloaded from dbEST at NCBI 10 July 2010), we generated a total of 27.1 
million Illumina RNA-Seq paired-end reads, 19.9 million of which were from 
Chiifu-401-42 and 7.2 million of which were from a Caixin accession, L58, to 
verify the predicted gene models (Supplementary Fig. 24). For Chiifu-401-42,  
equally mixed total RNA isolated from eight different tissues and growth con-
ditions was used: leaves, roots and floral stems from plants grown in pots;  

2-week-old etiolated seedlings; shoots from plants grown hydroponically 
under normal conditions; and leaves from plants treated with 0.5% NaCl at 
4 °C and 37 °C for 24 h. For L58, equally mixed total RNA was isolated from 
similar tissues with the addition of germinating seeds, callus and pods.

The genome assembly was premasked for class I and class II transposable 
elements, and Genscan and Augustus were used to carry out de novo predic-
tions with gene model parameters trained from A. thaliana. Genes with less 
than 150 bp of coding sequence were filtered out. For homology-based gene 
prediction, we aligned A. thaliana, C. papaya, Populus trichocarpa, V. vinifera 
and Oryza sativa protein sequences to the B. rapa genome using TBLASTN 
(at an E value of 1 × 10−5) for fast alignment and Genewise43 for precise align-
ment. The Unigene sequences of B. rapa and the Brassica ESTs downloaded 
from NCBI were aligned to the B. rapa genome using BLAT and assembled 
by PASA44 based on genomic location. As the fragmental exons in ESTs data 
might lead to pseudo alignments, we filtered out the results with intron(s) 
more than 10,000 bp. GLEAN45 was used to combine de novo gene sets and 
homology-based gene sets and incorporated the expressed sequence data 
described above as supporting evidence (Supplementary Tables 20 and 21 and 
Supplementary Figs. 24 and 25). In addition, those predicted B. rapa proteins 
that aligned to the Repbase transposable element protein database (E value  
1 × 10−5 at ≥50%) were filtered out.

The B. rapa predicted proteins were annotated based on alignment to the Swiss-
Prot and TrEMBL databases with BLASTP at E value 1 × 10−5. InterPro was used 
to annotate motifs and domains by comparison with publicly available databases 
including Pfam, PRINTS, PROSITE, ProDom and SMART. The Gene Ontology 
information for each gene code was extracted from the InterPro results.

To identify and estimate the number of potential orthologous gene fami-
lies between B. rapa, V. vinifera, A. thaliana and C. papaya, we applied the 
OrthoMCL pipeline46 using standard settings (BLASTP E value < 1 × 10−5) to 
compute the all-against-all similarities.

Inter- and intra-genomic alignments. The synteny within and between spe-
cies was constructed by McScan (MATCH_SCORE: 50, MATCH_SIZE: 5, 
GAP_SCORE: –3, E_VALUE: 1E–05). An all-against-all BLASTP comparison 
provided the pairwise gene information and P value for a primary clustering. 
Then, paired segments were extended by identifying clustered genes using 
dynamic programming. This method was used to build the genome synteny 
blocks of B. rapa versus B. rapa, A. thaliana, C. papaya, P. trichocarpa,  
V. vinifera and O. sativa, and A. thaliana versus A. thaliana.

Phylogenetic analyses of biologically important gene families. Gene sequences 
from grape, papaya and Arabidopsis were downloaded from the GenoScope 
database, the Hawaii Papaya Genome Project and the Arabidopsis Information 
Resource, respectively (see URLs). Previously reported Arabidopsis and Brassica 
gene sequences were downloaded from GenBank. The protein sequences of the 
genes were used to determine homologs in grape, papaya, A. thaliana and B. rapa 
by performing BLASTP searches at E value 1 × 10−10. Alignment of each family 
was performed by running MEGA with default parameters47 and subjected to 
careful manual checking to remove highly divergent sequences from further 
analysis. The retrieved protein sequences were used to reconstruct phylogenies 
using the neighbor-joining approach implemented in MEGA47. A bootstrapping 
test was performed using 100 repetitive samplings for each gene family.

http://www.brassica-rapa.org/BRGP/bacEndList.jsp
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